
Sample size for beginners

Charles du V Florey

The common failure to include an estimation of
sample size in grant proposals imposes a major
handicap on applicants, particularly for those pro-
posing work in any aspect of research in the health
services. Members of research committees need
evidence that a study is of adequate size for there to
be a reasonable chance of a clear answer at the end.
A simple illustrated explanation of the concepts in
determining sample size should encourage the faint
hearted to pay more attention to this increasingly
important aspect ofgrantsmanship.

The question of how many subjects are needed in a

study arises in the planning of most projects but is
often left inadequately answered in grant proposals.
Although the answer requires statistical reasoning as

well as informed guesswork, all researchers should be
able to grasp the concepts used in calculations of
sample size and many should be able to do the
calculations for themselves. This paper is concerned
with the simplest aspects of the concept of sample size
and is primarily for those with little experience of the
subject.
The paper is divided into three main sections. The

first explains the principles underlying the estimation
of sample size. It is intended for readers who want to
grasp only the basic ideas on which calculations of
sample size rely to understand the questions a collab-
orating statistician will ask. The second section des-
cribes the practical aspects of calculation in two simple
examples for those who want to see what is concerned.
It also gives the rationale for the inclusion in grant
applications of certain numerical information. Readers
should understand the first section before attempting
the second. The third section summarises the elements
of the calculation of sample size which should appear in
a grant application.
The reader will need some knowledge of statistical

concepts such as given in the book Medical statistics on
microcomputers.'

The principles
Calculations of sample size depend on four factors:

the variance of the variable being studied, the size of
the effect of interest, the level of significance, and the
power ofthe test. In this section we look at the relations
between these factors by first considering how the
means from samples taken from the same population
vary both one from another and according to sample
size.
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SAMPLING VARIATION AND VARIANCE

The central problem ofusing samples to tell us about
the group they represent is that the results are
influenced by the play of chance. This is called
sampling variation. To illustrate this let us set up an

experiment to estimate the percentage of boys among
newborn infants in Scotland. From statistics published
by the government, 52% of babies born in Scotland are
known to be male. This percentage comes from
counting all 53 000 births in a year according to sex.
How precisely can an estimate of this population
percentage be made by taking a small sample of say 100
births? (Box 1.)

From a single random sample of 100 infants the
percentage of boys is found to be 54%. This is an

estimate of the population value. A second sample
would in all likelihood give a slightly different result
even though it had been taken from the same popula-
tion as the first. If a very large number of samples each
of 100 infants were taken the percentages from all the
samples could be plotted as a histogram. The plot in
figure 1 shows what the distribution would look like.

Figure 1 was made by simulation on a computer.
Twenty thousand random samples of 100 were selected
and the frequency of samples was plotted according to
the percentages of boys observed. In the simulation all
the samples were taken from the same population so all
the variation from sample to sample in the percentage
of boys is due only to chance. There was no other
influence on the result of each sample of 100 infants
except chance, but even under these conditions a few
samples had very extreme values, a long way from the
population value. The variation from one sample to
another is measured as the variance (box 2).
The distribution is normal, centred around the

population value of 52%. Figure 2 shows the theoreti-
cal shape of the curve for samples of size 100 with the
population value of 52% and the ranges within which
68% and 95% ofthe distribution lie.

It is conventional to call any observed proportion
unusual or surprising if it occurs outside the central
95% ofthe distribution. Our sample value of54% is not
unusual so we might be willing to accept it as entirely
consistent with a true (population) value of 52%. In
fact, given this interpretation of the central 95%
interval, any value between 42% and 62% would not be
surprising.
Even though we have used what might seem to be a
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Box 1

* Population refers to the universe of items being
sampled, in this case all infants in Scotland born in a
particular year
* Sample refers to a selection of items from the
population, in this case the 100 infants chosen
randomly
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fairly large sample of 100 observations the interval is
rather wide and does not give much indication of the
population value. The interval is critically dependent
on sample size. Figure 3 shows the normal distribution
for samples of size 500 superimposed on the distribu-
tion for samples of size 30. The small samples give an
extremely wide interval (34% to 70%), so much so that
any sample result will give little clue as to the likely
value of the population mean. The larger samples have
a much narrower interval (47-6% to 56.4%). With
larger sample sizes the population value will be
estimated with increasing precision. Figure 3 shows
why a sample may be so small that it cannot provide a
useful answer. Estimation of the required sample size
before collection of data will go a long way towards
avoiding this pitfall.

EFFECT SIZE

The sample size determines the precision with which
a population mean can be estimated. Few studies,
however, set out simply to estimate population means
or prevalence or incidence rates of disease; most test
hypotheses that there are differences between groups
ofpeople who are exposed to different experiences. For
example, consider a hypothetical trial of treatment for
ovarian cancer. For an estimation of sample size we
must have some idea of how big an effect of treatment
can be expected based on previous experience or from
published reports or what would be of scientific or
clinical interest. The five-year mortality of women
receiving conventional care is known to be 73% from
experience in the hospital where the trial is to take place.
A new drug is available for assessment. A reduction in
mortality to 50% would be of considerable clinical
interest. The postulated effect of the new drug is the
difference between these mortalities (23%) and is
known as the effect size. The question is: how big a
sample is needed to be reasonably certain of distin-
guishing a true effect of this size from no effect at all?
We are interested in detecting either an advantage or a
disadvantage of the new treatment so must compare
the effect size observed in the trial with zero effect. To
test the hypothesis a controlled trial is used in which
patients are randomly allocated to two groups, one
receiving conventional care (controls) and one the new
drug (the experimental group). The hypothesis may be
rephrased to state that "there is no difference between
the mortalities of the experimental group and the
controls." Because the hypothesis is in terms of no
difference it is known as the null hypothesis.

In place of the distributions of percentages from
single samples, as in figures 1-3, we are now concerned
with the distributions of the differences between
mortalities derived from pairs of samples. Figure 4
shows the distribution of the differences in mortalities

obtained from pairs of samples of size 100 drawn from
experimental and control groups with identical popula-
tion mortalities. As the difference between the popula-
tion mortalities must be zero the distribution is centred
around this population value.

SIGNIFICANCE

The significance tells us how likely it is that an
observed difference is due to chance when the true
difference is zero. We can arbitrarily specify surprising
results as those outside the 95% interval. In figure 4
such results would be those in which the differences
between the experimental group and controls were
equal to or greater than 13% (that is, in favour of
treatment) or equal to or less than - 13% (the negative
value implies an increased mortality in the experi-
mental group). In this trial 13% and - 13% are the
upper and lower critical values-if the observed result
lay beyond them the null hypothesis would be rejected,
even though this would mean taking a 5% chance of
being wrong because the result was simply an extreme
one. This error of rejecting the null hypothesis when it
is true is known as a type I or ox error. The error is the
one usually referred to as the level of significance in
reports of statistical analyses. In this example the
conventional value of 5% for ot has been chosen, but
this is quite arbitrary. A more restrictive value might
be taken, such as 1% or even 0-1% to reduce the
possibility of accepting the treatment as effective when
the result is simply due to chance.

POWER

The power tells us how likely we are to detect an
effect for a given sample size, effect size, and level of
significance. In the treatment trial we believe that an
effect or change in mortality of 23% can be obtained.
Thus our alternative hypothesis (alternative to the
null) is that there is a true effect of 23%. The results
from samples taken to estimate this value can be
expected to be centred about the value 23%.

Figure 5 shows two distributions. On the left is the
theoretical distribution for the null hypothesis which
underlies figure 4. The upper critical value of 13% is
marked by the vertical line. On the right is the
distribution for the alternative hypothesis that the true
effect size is 23%, similarly based on samples of size
100. The areas where the two curves overlap on either
side of the upper critical value of 13% are also marked.
Quite a few samples within the distribution for the
altemative hypothesis lie in the shaded area, labelled
,B, where the null hypothesis would be accepted. In this
example, about 10% of the altemative hypothesis
samples would be accepted as being consistent with the
null hypothesis. This is the converse of the type I error
and is known as the type II or I1 error. It occurs when
the null hypothesis is accepted when in fact it is wrong.
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Box 2

Measures ofvariability
* Variance is a measure of the variability of any
characteristic which varies from sample to sample. It is
calculated in squared units. Its square root is called
either a standard deviation or standard error

* Standard deviation (SD) is a measure ofhow variable
individual observations are within a sample. It is
applied to continuously distributed variables such as
height, weight, blood pressure, haemoglobin concen-
tration and so on but not to percentages

* Standard error (SE) is a measure of how variable the
mean or a percentage is from one sample to another. In
normal distributions the range mean -1 SE to mean
+ 1 SE includes 68% of the distribution and the mean
- 1 96 SE to mean + 1-96 SE includes 95%. The SE of
continuously distributed variables is equal to SD/*/ii,
where n is the sample size.
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The power of the sample to detect a true difference
in mortality of 23% is the likelihood of a sample
estimate occurring above the critical value. As 10% (1)
of the distribution lies below this value 90% must lie
above it. Thus there is a 90% (100-13) chance of
detecting a true difference of 23% with samples of size
100 given a significance level of5% (a).
We have already seen that the spread of the distribu-

tion of sample estimates can be altered by changing the
number of observations used in calculating each
estimate; the more observations the narrower the
distribution (fig 3). Figure 6 shows simulated distribu-
tions of sample estimates of differences for samples of
size 500 instead of 100. Both distributions are centred
around the same population values as in figure 5, but
the spread of sample values is now so much less that for
all intents and purposes there is no overlap. If from a
single pair of samples we obtained a difference of 13%
or more it would be an extremely surprising result were
the null hypothesis true as it would occur in only about
1 in 1000 samples. We would have no hesitation in
rejecting the hypothesis. In fact with these large
samples we should be able to detect as statistically
important much smaller differences than 23%. Simply
by increasing the number of observations we have
improved our ability to discriminate between our null
and altemative hypotheses.

Practice
BASIC CALCULATIONS

To calculate the sample size for a trial or a compan-
son between two groups with effects measured in
percentages we must have the following information:

* The likely value for the outcome variable given
conventional treatment and the effect size which will
be of clinical or biological interest (in the trial
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500

example these are the likely death rate in the control
group-73% and the effect size ofinterest-23%)
* The value for ot (in the example we used the
conventional 5%)
* The value for 13 (in the example we used 100/%).
These choices will lead to rejection of the null

hypothesis when it is true in 5% of samples and
acceptance of the null hypothesis when it is not true
in 100% of samples, given the assumed true difference of
23%. Other values commonly used are 1% for a
and 20%, 5%, and l1% (giving powers of80%, 955%, and
99% respectively) for 13.
The critical value in figure 5 marks the upper limit of

the 95% interval of the null distribution. Its position on
the horizontal axis can be calculated from information
both from the null distribution and from the altema-
tive distribution.
Based on the properties of the normal distribution

the critical value lies 1 96 standard errors above the
true null value of 0 (zero). The standard error can be
calculated from the formula:

SEdiff=\/(plql +P2q2)/n

where Pl is the percentage of subjects dying in the
treated group and q1 is the percentage surviving (equal
to 100-p ) and similarly for P2 and q2 for the controls.
The number of subjects in one ofthe groups is assumed
equal to the number of subjects in the other groups and
is represented by n. Thus the position of the critical
value on the horizontal axis is:

the true null value+ 1 96xSEdiff
=00+±1 96V(p1q1 +p2q2)n

The critical value can also be defined by using
information about the altemative distribution. The
standard error is calculated as above. When B= 10%, as
in the figure, the critical value lies 1 28 standard errors
below the altemative true value of23% (box 3).
As the critical value can be defined by two different

expressions, the expressions must be equal to each
other:

23-1 ~28 V(p1q1 +p2q2)/n= 0 0+1 96A(p1ql +p2q2)/n

232n= (1 *28Vy(plql +p2q2) + 1 96V(p1q1 +P2q2))

n= ((1 -96+ 1 28)2(plql +p2q2))/232

Substituting our own figures into this equation we get:

plql+P2q2=50x50+73x27=4471
n=(1-96+ 1X28)2(4471)/232
n=89 (to the nearest whole number)

This equation is rather rudimentary and more sophisti-
cated methods of estimation are available.'-3 It shows,
however, that by using the standard formulas we come
up with more or less the same value as obtained from
simulation-namely, about 100 observations in each of
a pair ofsamples or a total study size of 200.

If you compare means of continuously distributed
variables* such as blood pressure, plasma glucose
concentration, or height the calculation is slightly
simpler. It requires the difference you think will be of
interest between the means of the two groups (d), the
likely standard deviation (s) of the variable (it should
be the same for both groups), and the selected values of
a and 1. When ao and 13 are 5% and 10% respectively,
the formula for the sample size n is:

n=2(1 96+1 28)2s2/d2

BMJ voLuMF 306 1 MAY 1993 1183



Box 3
Multipliers for conventional values ofa

at Multiplier

5% 1-96
1% 2-58

Multipliers for conventional values of 1

1| Multipliers

20% 0-842
10% 1-28
5% 1-64
1O% 2-33

The sample size is for each group so the total number of
subjects in the study will be 2n.
This formula could be used, for example, in a

comparison of blood pressures between control and
treated groups. A reduction of 20 mm Hg would be of
clinical interest. The standard deviation of diastolic
blood pressure has been found to be 15 mm Hg in
patients already measured in the hospital where the
trial is to be carried out. The number of subjects
required in each group, given that a and ,B have been
chosen as 5% and 10% respectively, is:

2(1 96+1 28)x 152/202=20 995x225/400= 12

This means that 12 controls and 12 patients treated
with the new drug would be needed to have a 90%
chance of detecting a true difference of 20 mm Hg or
larger at the 5% level of significance.

Other values of a and ,B may be selected. the
conventional values and their associated multipliers
(standard normal variate values) are given in box 3.

What to put in a grant application
You should consider the following points and check

whether you have included them in a paragraph
devoted to the calculation ofsample size.

Firstly, give the bare essentials for the calculation so
that the reader can check your arithmetic. For differ-
ences in percentages the likely population value of P1
and the effect size of interest should be given, from
which P2 and the standard error can be calculated. The
variable you choose for the calculation should be the
most important one to the interpretation of the study.
Sometimes it is wise to do calculations for a number of
outcome variables to see if they all give about the same
sample size or if there are some variables which are
more likely to yield precise results than others. For
differences in means of continuously distributed vari-
ables the likely population mean of the variable of
greatest interest for the controls, the effect size of
interest, and the standard deviation for either the cases

or controls should be given (the standard deviations for
the two groups are assumed to be the same). Your
choice of effect size and variance (standard error or
deviation) should be justified-for example, because
they have appeared in published reports or they make
biological or clinical sense.

Secondly, state the selected values for ac (usually 5%
or 1%) and P (usually 20%, 10%, 5%, or rarely 1%).
Justification should be given for your choice of the
values of a and ,B, such as the unavailability of greater
numbers of patients, the cost of increasing the sample
size, the loss of control over quality of data if the
sample size were increased, etc.

Finally, you should refer to the method of calcula-
tion ofsample size.'9

A word ofcaution
This discussion has barely touched on the entire

subject of calculating sample size. There are many
special circumstances when the formulas given here are
inadequate or inappropriate.8 Randomised controlled
trials are better analysed by comparison of survival
curves, an analysis which implies a somewhat different
mathematical approach from the one I have given. Or
the question asked might be whether the new treat-
ment is not worse than the usual treatment because if
it is no worse its other properties-lower cost for
example-might make it preferable.9 Crossover trials,
trials with more than two treatments, and studies using
ordinal data which require different statistical methods
from those given above are among other topics to keep
in mind when deciding exactly how to estimate sample
size for the study in hand. These are not within the
scope ofthis article. My aim has been to alert the novice
to the underlying concepts and to suggest the very
minimum of information to be offered to committees
judging grant applications. The references point to
further reading. I hope that the reader will appreciate
the importance of joining forces with a statistician early
in the planning of a study.
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INSIGHTS

Tennyson looks at the psychological
development ofthe infant

The baby new to earth and sky,
What time his tender palm is prest
Against the circle of the breast,
Has never thought that "this is I":

But as he grows he gathers much
And learns the use of "I" and "me,"
And finds "I am not what I see,
And other than the thing I touch."

So rounds he to a separate mind
From whence clear memory may begin,
As thro' the frame that binds him in
His isolation grows defined.

Alfred Lord Tennyson (1809-92), In Memoriam, section 45.
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