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Abstract

Scientists who use animals in research must justify the num-
ber of animals to be used, and committees that review pro-
posals to use animals in research must review this
justification to ensure the appropriateness of the number
of animals to be used. This article discusses when the num-
ber of animals to be used can best be estimated from pre-
vious experience and when a simple power and sample size
calculation should be performed. Even complicated experi-
mental designs requiring sophisticated statistical models
for analysis can usually be simplified to a single key or
critical question so that simple formulae can be used to
estimate the required sample size. Approaches to sample
size estimation for various types of hypotheses are de-
scribed, and equations are provided in the Appendix. Sev-
eral web sites are cited for more information and for
performing actual calculations.
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n the United States and in most European countries, an

investigator must provide the animal care committee with

an explanation for the number of animals requested in a
proposed project to ensure appropriateness of the numbers
of animals to be used. This article is written for animal care
committee members and veterinarians and for researchers
who are asked to provide statistical calculations for the pro-
posed number of animals to be used in their project. The
project’s purpose may be to obtain enough tissue to do
subsequent analyses, to use a small number of animals for a
pilot experiment, or to test a hypothesis. In the text below,
we discuss the statistical bases for estimating the number of
animals (sample size) needed for several classes of hypoth-
eses. The types of experiments that an investigator might
propose and the methods of computing sample size are
discussed for situations where it is possible to do such a
computation.
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Types of Experiments

Types of experiments include pilot and exploratory, those
based on success or failure of a desired goal, and those
intended to test a formal hypothesis. Each type is discussed
briefly below.

Pilot and Exploratory Experiments

It is not possible to compute a sample size for certain types
of experiments because prior information is lacking or be-
cause the success of the experiment is highly variable, such
as in producing a transgenic animal. For other types of
experiments, complicated statistical designs can be simpli-
fied to an important comparison wherein the sample size
should be large enough to have a good chance of finding
statistical significance (often called power; see Effect Size,
Standard Deviation, Power, and Significance Level). Pilot
experiments are designed to explore a new research area to
determine whether variables are measurable with sufficient
precision to be studied under different experimental condi-
tions as well as to check the logistics of a proposed experi-
ment. For example, suppose the investigator wishes to
determine whether a certain factor, x, is elevated in an ani-
mal model of inflammation. The laboratory has developed
an assay for factor x and now wishes to determine the varia-
tion of factor x in a population of mice. In the protocol, the
investigator proposes measuring the concentration of factor
x in 10 animals before and after the induction of inflamma-
tion. In a pilot experiment such as this, the number of ani-
mals to be used is based on experience and guesswork
because there are no prior data to use in estimating the
number of animals needed for the study. The experiment is
performed to provide a rough idea of the standard deviation
and the magnitude of the inflammatory effect.

A statistical analysis of the results yields estimates of
the mean and standard deviation of factor x concentration
before and after the induction of inflammation as well as
estimates of the mean difference and its standard deviation.
Such estimates can then be used to compute the sample size
for further experiments. The investigator would be encour-
aged if the standard deviation of factor x in the 10 animals
is relatively small compared with the concentration of the
factor. Suppose that the mean concentration of factor x in-
creased twofold after inflammation was induced, a change
that should be easily detected if the variation of the change
in the population is low. Then the pilot experiment will have
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been encouraging in that the investigator may be able to
track the increase in the concentration of factor x over time
and determine changes in the concentration of the factor
with various forms of therapy. The results of the pilot ex-
periment can be used to estimate the number of animals
needed to determine time trends and to study the effect of
various interventions on the concentration of factor x using
methods described below.

Sometimes “exploratory” experiments are performed to
generate new hypotheses that can then be formally tested. In
such experiments, the usual aim is to look for patterns of
response, often using many different dependent variables
(characters). Formal hypothesis testing and the generation
of p values are relatively unimportant with this sort of ex-
periment because the aim will be to verify by additional
experiments any results that appear to be of interest. Usually
the number of animals used in such experiments is based
on a guess based on previous experience. Data collected
in exploratory experiments can then be used in sample
size calculations to compute the number of animals that will
be needed to test attractive hypotheses generated by the
exploration.

Experiments Based on Success or Failure of a
Desired Goal

In experiments based on the success or failure of a desired
goal, the number of animals required is difficult to estimate
because the chance of success of the experimental proce-
dure has considerable variability. Examples of this type of
experiment are production of transgenic animals by gene
insertion into fertilized eggs or embryonic stem cells. Large
numbers of animals are typically required for several rea-
sons. First, there is considerable variation in the proportion
of successful gene or DNA incorporation into the cell’s
genome. Then there is variability in the implantation of the
transferred cell. Finally, the DNA integrates randomly into
the genome and the expression varies widely as a function
of the integration site and transgene copy number.

Compounding this variability, different strains of mice
react differently to these manipulations, and different genes
vary in their rates of incorporation into the genome. It is
often necessary to make several transgenic lines (see the
discussion of transgenic animals in the ARENA/OLAW In-
stitutional Care and Use Committee Guidebook [ARENA/
OLAW 2002]). Using equation 1 below (Single-Group
Experiments) and assuming that the success rate for all of
the steps just mentioned is 5%, then one would need to use
50 animals, whereas a success rate of 1% would require
using 300 animals. These numbers accord with the experi-
ence of investigators in the field and are usually the range of
numbers of mice required to produce a single transgenic
line.

In the case of knockout or knockin mice produced by
homologous recombination, there is much less variability in
the results and fewer animals may have to be produced.
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Again, it is difficult to predict the number required, espe-
cially if investigating the effects of regulatory sequences
rather than of protein expression. The number of animals
required is usually estimated by experience instead of by
any formal statistical calculation, although the procedures
will be terminated when enough transgenic mice have been
produced. Formal experiments will, of course, be required
for studying the characteristics of the transgenic animals
requiring yet more animals.

Experiments to Test a Formal Hypothesis

Most animal experiments involve formal tests of hypoth-
eses. In contrast to pilot experiments and the other types of
experiments described above, it is possible to estimate the
number of animals required for these experiments if a few
items of information are available. Broadly, there are three
types of variables that an investigator may measure: (1)
dichotomous variable, often expressed as a rate or propor-
tion of a yes/no outcome, such as occurrence of disease or
survival at a given time; (2) continuous variable, such as
the concentration of a substance in a body fluid or a physi-
ological function such as blood flow rate or urine output;
and (3) time to occurrence of an event, such as the appear-
ance of disease or death. Many statistical models have been
developed to test the significance of differences among
means of these types of data. Detailed discussions of the
models can be found in books on statistics (Cohen 1988;
Fleiss 1981; Snedecor and Cochran 1989), in manuals for
various computer programs used for statistical analyses
(Kirkpatric and Feeney 2000; SAS 2000), and on websites
that present elementary level courses on statistics (e.g.,
<http://www.ruf .rice.edu/~lane/rvls.html>). In this article,
we describe methods for computing sample size for each of
these types of variables.

Defining the Hypothesis to Be Tested

Although experimental designs can be complicated, the in-
vestigator’s hypotheses can usually be reduced to one or a
few important questions. It is possible then to compute a
sample size that has a certain chance or probability of de-
tecting (with statistical significance) an effect (or differ-
ence) the investigator has postulated. Simple methods are
presented below for computing the sample size for each of
the three types of variables listed above. Note that the
smaller the size of the difference the investigator wishes to
detect or the larger the population variability, the larger the
sample size must be to detect a significant difference.

Effect Size, Standard Deviation, Power, and
Significance Level

In general, three or four factors must be known or estimated
to calculate sample size: (1) the effect size (usually the
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difference between 2 groups); (2) the population standard
deviation (for continuous data); (3) the desired power of the
experiment to detect the postulated effect; and (4) the sig-
nificance level. The first two factors are unique to the par-
ticular experiment whereas the last two are generally fixed
by convention. The magnitude of the effect the investigator
wishes to detect must be stated quantitatively, and an esti-
mate of the population standard deviation of the variable of
interest must be available from a pilot study, from data
obtained via a previous experiment in the investigator’s
laboratory, or from the scientific literature. The method of
statistical analysis, such as a two-sample #-test or a com-
parison of two proportions by a chi-squared test, is deter-
mined by the type of experimental design. Animals are
assumed to be randomly assigned to the various test groups
and maintained in the same environment to avoid bias. The
power of an experiment is the probability that the effect will
be detected. It is usually and arbitrarily set to 0.8 or 0.9 (i.e.,
the investigator seeks an 80 or 90% chance of finding sta-
tistical significance if the specified effect exists). Note that
1-power, symbolized as 3, is the chance of obtaining a
false-negative result (i.e., the experiment will fail to reject
an untrue null hypothesis, or to detect the specified treat-
ment effect).

The probability that a positive finding is due to chance
alone is denoted as «, the significance level, and is usually
chosen to be 0.05 or 0.01. In other words, the investigator
wishes the chance of mistakenly designating a difference
“significant” (when in fact there is no difference) to be no
more than 5 or 1%. Once values for power and significance
level are chosen and the statistical model (e.g., chi-squared,
t-test, analysis of variance, linear regression) is selected,
then sample size can be computed using the size of the
effect the investigator wishes to detect and the estimate of
the population standard deviation of the factor to be studied,
using methods outlined below.

Several websites contain discussions of the principles of
sample size calculations or have programs that will permit
the user to make sample size calculations using various
techniques. A few of these are

e <http://www.biomath.info>: a simple website of the
biomathematics division of the Department of Pediatrics
at the College of Physicians & Surgeons at Columbia
University, which implements the equations and condi-
tions discussed in this article;

e <http://davidmlane.com/hyperstat/power.html>: a clear
and concise review of the basic principles of statistics,
which includes a discussion of sample size calculations
with links to sites where actual calculations can be
performed;

e <http://www.stat.uiowa.edu/~rlenth/Power/index.
html>: a site where sample size calculations can be
made for many different statistical designs;

e <http://www.zoology.ubc.ca/~krebs/power.html>: a re-
view of several software packages for performing
sample size calculations; and
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* <www.lal.org.uk/hbook14.htm> references an excellent
handbook on experimental design and includes links to
several statistical packages.

Also available are specialized computer programs such
as nQuery Advisor, and statistical packages such as SPSS,
MINITAB, and SAS, which will run on a desktop computer
and can be used both for sample size calculations and for
performing statistical analysis of data.

It should be noted that in the following discussion of
sample size calculations, the aim is to simplify the question
being addressed so that power calculations can be per-
formed easily. There is no need to alter the actual design of
the experiment and data analysis. Using, for example, ran-
domized block, Latin square and/or factorial experimental
designs, and the analysis of variance, it is possible to control
for the effect of strain differences on a factor such as sur-
vival or response to an intervention and to obtain a more
significant result than using more elementary methods.
However, the simplified designs discussed here yield
sample sizes close to what would be obtained with more
complex analyses and hence should help the investigator be
self-sufficient in planning experiments.

Experiments can be classified in a variety of ways.
Many are carried out in two (or more) groups of animals. In
the text below, these types are considered first, followed by
single-group experiments.

Sample Size for Dichotomous Data

An experiment can involve measurement of dichotomous
variables (i.e., occurrence of an event, expressed as rates or
proportions). Sample size calculations for dichotomous
variables do not require knowledge of any standard devia-
tion. The aim of the experiment is typically to compare the
proportions in two groups. In such a case, a relatively
simple formula (Appendix Equation 1) will give the re-
quired sample size, given values for power, significance
level, and the difference one wishes to detect. If more than
two groups are studied, it is often possible to identify two
rates that are more important to compare (or closest to each
other) than any other pair.

Many books on statistics have tables that can be used to
compute sample size, and nearly all statistical computer
programs also yield sample size when power, significance
level, and size of difference to be detected are entered. As
an example, suppose previous data suggest that the sponta-
neous incidence of tumors in old rats of a particular strain is
20% and an experiment is to be set up to determine whether
a chemical increases the incidence of tumors, using the
same strain of rats. Suppose also that the scientist specifies
that if the incidence increases to 50%, he/she would like to
have an 80% chance of detecting this increase, testing at
p = 0.05. Using Appendix Equation 1 and entering p;, =
0.2, p, = 0.5 (for power = 0.8 and a = 0.05), we learn
that this experiment would require 43.2 or roughly 45 rats

per group.

209



Note that the equations in the Appendix (also used in
the calculations that can be carried out on the <www.
biomath.info website) give sample sizes large enough to
detect an increase or decrease in the variable (i.e., for a
two-tailed test). Even when the postulated effect is an in-
crease, it can be argued that a statistically significant change
in the opposite direction is interesting and may merit further
study. Nearly all clinical trials are now designed for two-
tailed tests. In the carcinogenicity rat assay described above,
it might be interesting and warrant further study if the test
compound resulted in a significant fall in the spontaneous
tumor rate. Also note that Appendix Equation 1 contains a
continuity correction for the fact that the distribution of
discrete data is being approximated by a continuous distri-
bution (Fleiss 1981). Many computer programs used for
sample size calculation do not include the continuity cor-
rection and hence will yield somewhat smaller sample size
values.

Sample Size for Continuous Variables

Experiments are often designed to measure continuous vari-
ables such as concentration of a substance in a body fluid or
blood flow rate. Although the statistical analytical models
may be complex, it is often critical to detect the difference
in the mean of a variable between two groups if that differ-
ence exists. In this case (Appendix Equation 2), a simple
formula can be used to compute sample size when power,
significance level, the size of the difference in means, and
variability or standard deviation of the population means are
specified. Again, the calculations are available in most mod-
ern statistical packages.

Suppose that in previous experiments the mean body
weight of the rats used at a certain age is 400 g, with a
standard deviation of 23 g, and that a chemical that reduces
appetite is to be tested to learn whether it alters the body
weight of the rats. Assume also that the scientist would like
to be able to detect a 20 g reduction in body weight between
control and treated rats with a power of 90% and a signifi-
cance level of 5%, using a two-tailed unpaired t-test (two-
tailed because the chemical might increase body weight). A
computer program, or calculations based on Appendix
Equation 2, suggests that 28.8 rats per group or roughly 60
(30 animals per group times 2 groups) rats are required for
the whole experiment.

Single-Group Experiments

If the aim is to determine whether an event has occurred
(e.g., whether a pathogen is present in a colony of animals),
then the number of animals that need to be tested or pro-
duced is given by:

<)
0
ko)
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log p

where 1-f is the chosen power (usually 0.10 or 0.05) and p
represents the proportion of the animals in the colony that
are not infected. Note that the proportion not infected is
used in the formula. For example, if 30% of the animals are
infected and the investigator wishes to have a 95% chance
of detecting that infection, then the number of animals that
need to be sampled (n) is

log 0.05
= =8.4
log 0.7

n

A total of nine animals should be examined to have a 95%
chance of detecting an infection that has affected 30% of the
animals in the colony. If the prevalence of infection is lower
(e.g., 10%), then

log 0.05
"= T0g09

Roughly 30 animals should be sampled. Thus, many
more animals need to be sampled if the prevalence of the
pathogen is low.

Proportion

The result described above is for a case in which the oc-
currence of an event in even one animal is of interest. In
other single-group experiments, the researcher is interested
in establishing that the postulated proportion is nonzero, or
different from a prespecified value (known from prior stud-
ies, from physiological considerations, or as a value of clini-
cal interest). It can be shown that the number of animals
required for such an experiment is simply half the number
given by Appendix Equation 1. In this case, p, is the pos-
tulated proportion, and p, is 0 or the prespecified value.

Continuous Variable

In a similar fashion, the researcher may measure a continu-
ous variable in a single group and wish to establish that it is
nonzero or different from a prespecified value. As with a
proportion, it can be shown that the number of animals
required for such an experiment is simply half the number
given by Appendix Equation 2. In this case, d is the differ-
ence between the prespecified value and the postulated
mean experimental value.

Controlling Variability by Repeat Study
Estimates of the required sample size depend on the vari-
ability of the population. The greater the variability, the

larger the required sample size. One method of controlling
for variability in the level of a continuous variable such as
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blood flow is to measure the variable before and after an
experimental intervention in a single animal. In this case,
instead of using an estimate of the variability of the popu-
lation mean, the variability of the difference is estimated.
The standard deviation of the difference in a measurement
in an individual is lower because it does not include inter-
individual variability. Stated in other terms, each animal is
its own control. The number of animals needed to test a
hypothesis will be reduced because the effect of animal-to-
animal variation on the measurement is eliminated. Such an
experiment is normally analyzed using a paired #-test. Ap-
pendix Equation 3 provides sample size calculation for such
an experimental design. Crossover designs in which differ-
ent groups of animals may have several different treatments
in random sequential order are a generalization of this ex-
ample. Such designs are also used to eliminate interindivid-
ual variability. In determining sample size, it is probably
best to base the estimates on two chosen treatments.

Correlation Between Two Variables

If two continuous variables are measured in a single group,
the question may be whether they are correlated signifi-
cantly. For an assumed or postulated correlation coefficient,
it is possible to calculate the number of animals needed to
find a significant correlation. Appendix Equation 4 provides
the necessary formula.

Considerations of Normality

The sample size calculations for continuous variables (Ap-
pendix Equations 2-4) assume that the variables are nor-
mally distributed (i.e., the values fall on a bell-shaped
curve). The calculations are fairly robust: Small departures
from normality do not unduly influence the test of the hy-
pothesis. However, if the variable has a long tail in one
direction (usually to the right), then the deviation from nor-
mality becomes important. A common method for making a
distribution more normal is to use the log or square-root or
some other transformation in the analyses. Such a transfor-
mation will often result in a variable that is closer to being
normally distributed. One then uses the transformed vari-
able for sample size calculations and for further statistical
analysis.

Sample Size for Time to an Event
Simple Approaches

The statistical analysis of time to an event involves com-
plicated statistical models; however, there are two simple
approaches to estimating sample size for this type of vari-
able. The first approach is to estimate sample size using the
proportions in the two experimental groups exhibiting the
event by a certain time. This method converts time to an
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event into a dichotomous variable, and sample size is esti-
mated by Appendix Equation 1. This approach generally
yields sizes that are somewhat larger than more precise
calculations based on assumptions about the equation that
describes the curve of outcome versus time.

The second approach is to treat time to occurrence as a
continuous variable. This approach is applicable only if all
animals are followed to event occurrence (e.g., until death
or time to exhibit a disease such as cancer), but it cannot be
used if some animals do not reach the event during the
study. Time to event is a continuous variable, and sample
size may be computed using Appendix Equation 2.

Unequal Number of Animals in
Different Groups

Studies of transgenic mice often involve crossing heterozy-
gous mice to produce homozygous and heterozygous litter-
mates, which are then compared. Typically, there will be
twice as many heterozygotes in a litter as homozygotes,
although the proportions may be different in more compli-
cated crosses. In such experiments, the researcher wishes to
estimate the number of animals with the expected ratio be-
tween the experimental groups. The equations provided in
the Appendix become considerably more complex. The
reader is directed to our website for unequal sample size
calculations (the expected ratio of group sizes is entered in
place of the 1.0 provided on the chi-squared test on propor-
tions web page): <http://www.biomath.info>.

Summary

In this article, we have discussed simple methods of esti-
mating the number of animals needed for various types of
variables and experiments. The thrust of the argument is that
although analysis of the final set of data may involve so-
phisticated statistical models, sample size calculations can
usually be performed using much simpler models. The aim
of the calculation is to estimate the number of animals
needed for a study, a value that is usually rounded up to
yield an adequate number of animals for the study.

It is frequently true, in the authors’ experience, that
investigators err on the side of using too few animals rather
than too many. This propensity results in a study that has too
little power to detect a meaningful or biologically signifi-
cant result. Roberts and colleagues (2002) did a meta-
analysis of 44 animal experiments on fluid resuscitation and
found that none of them had sufficient power to reliably
detect a halving of death rate. To avoid this error, it is
necessary to choose the power, the significance level, and
the size of the effect to be detected, and to estimate the
population variability of the variable being studied. Al-
though the design of the experiment is simplified for the
purposes of estimating sample size, it should be noted that
using a more sophisticated design and statistical analysis
usually yields the most power to detect any difference.

211



References

ARENA/OLAW [Applied Research Ethics National Association/Office of
Laboratory Animal Welfare]. 2002. Institutional Animal Care and Use
Committee Guidebook. Available from OLAW, National Institutes of
Health, Rockledge 1, Suite 360, MSC 7982, 6705 Rockledge Drive,
Bethesda, MD 20892-7982.

Cohen J. 1988. Statistical Power Analysis for the Behavioral Sciences. 2nd
Ed. Mahwah NJ: Lawrence Erlbaum Associates.

Fleiss JL. 1981. Statistical Methods for Rates and Proportions. 2nd Ed.
New York: Wiley.

Kirkpatric LA, Feeney BC. 2000. A Simple Guide to SPSS for Windows:
Versions 8, 9, and 10. 4th Ed. Wadsworth Publishing Co. <www.
wadsworth.com>.

Roberts I, Kwan I, Evans P, Haig S. 2002. Does animal experimentation
inform human healthcare? Observations from a systematic review of
international animal experiments on fluid resuscitation. Br Med J 324:
474-476.

SAS. 2000. Step-by-Step Programming with Base SAS Software. Cary
NC: SAS Institute Inc.

Snedecor GW, Cochran WG. 1989. Statistical Methods. 8th Ed. Ames:
Towa State Press.

Appendix

Dichotomous Variables
(Rates or Proportions)

Let r,. be the number of outcomes (an outcome is an event
of interest such as occurrence of disease, death, or presence
of a trait like coat color) in the control group, and r, is the
outcome in the experimental group.

Define

re r,

PC=E;Pe=]7’

e

where r,. is the number of events and N, is the total number
of animals in control group or group c, and r,, N, for the
experimental group or group e.

The investigator’s hypothesis is that p, is different from
p.. This hypothesis can be stated as a null hypothesis, H,
(i.e., there is no difference between the two proportions),
and a statistical test is devised to test that hypothesis. If the
null hypothesis is rejected, then the investigator can con-
clude, at significance level a, that there is a difference be-
tween the two proportions. If the null hypothesis is not
rejected, then the alternative hypothesis is rejected with the
probability that a false-negative of (3 has occurred. These
hypotheses can be stated as follows:

H,: (p.—p.=0)
Hl: (pc_pe 7 0)

The formula for determining sample size is derived from
a common statistical test for H,. Usually the investigator
knows or can estimate the proportion of the control group,
which will have the outcome being observed, and can state
a difference between the control group and the experimental
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group that he/she wishes to detect. The smaller this differ-
ence, the more animals will be needed. Thus, given esti-
mates for p. and p,, sample size n for each group can be
estimated:

n= C% + 3 + 2, Equation 1 (Fleiss 1981)
whereg, = 1-p5q9, =1-p,sandd = | P, - P,l. dis
the difference between p, and p,, expressed as a positive
quantity. C is a constant that depends on the values chosen
for a and B. There is seldom justification for one-sided
tests. The following list provides values of C for two levels
of o and 3 for two-sided tests (i.e., detection of any signifi-
cant difference if the experimental group is either higher or
lower than the control group):

o 005 0.01
1- 0.8 7.85 11.68
0.9 10.51 14.88.

If the observed p. = 0.5 and the investigator wishes to
detect a rate of 0.25 (p, = 0.25), then d = .25. Further
choose a = 0.05 and 1-f = 0.9 so C = 10.51. Then

0.5x0.5+0.25x0.75 2 5= 8357
0252 * 0.25 te= ’

n=10.51

in each group, which when rounded off is 85 in each group
for a total number of animals of 170.

Continuous Variables
Studies Comparing Two Group Means

To compute sample size for continuous variables, it is nec-
essary to obtain an estimate of the population standard de-
viation of the variable (s) and the magnitude of the
difference (d) the investigator wishes to detect, often called
the effect. Sample size is given by

s 2
n=1+2C (3) , Equation 2 (Snedecor and Cochran 1989)

where s is the standard deviation, d is the difference to be
detected, and C is a constant dependent on the value of
and B selected. C can be determined from the table above,
which gives values for C for two levels of o and 3. Note that
for o = 0.05 and 1- = 0.9, Cis 10.51 and 2C would be
21. If sis 4, d is 3, a« = 0.05, and 1-B = 0.9 (ie., C =
10.51 and 2C = 21), then

4\2
n=1 +21<§> =38.37

in each group or roughly 80 animals for the whole study.
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A useful rule of thumb is to multiply

s\2
(i)
(i.e., the quantity standard deviation divided by the differ-

ence to be detected squared) by 20 to obtain sample size
for each group. For the example above, the rule of thumb

2
(20 % (g) ) yields 35.5 or roughly 36 in each group.

Paired Studies
Paired studies compare values before and after an interven-

tion in the same animal. In this case, data are analyzed by a
paired ¢ test, and the sample size is computed by

N

2
n=2+C <ZZ> - Equation 3 (Snedecor and Cochran 1989)

Note that
s\2
(5
is multiplied by C in paired studies rather than 2C showing

that paired studies are more powerful than comparison of
two independent means.

Volume 43, Number 4 2002

Correlation Coefficient Between Two
Continuous Variables in a Single Group

A correlation coefficient r (from n observations) does not
have a normal distribution; however, the transformation

11 1+r
A R

produces a normal approximation with standard error ap-
proximately 1/\/(n-3) (Snedecor and Cochran 1989). From
this calculation, the number of animals needed to show that
a postulated (positive) correlation coefficient r is different
from a specified r, is given by

4C
n=3+ >

I1+r 1-ry\|?
In X
1-r 1+r,

where C is given in the list of C values above.

All four equations are implemented on our departmental
web page. The web page also allows calculations of detect-
able effect size when the number of animals is given, in
addition to allowing the number of animals to be different in
the two study groups, as can happen in comparing hetero-
zygous and homozygous littermates. As noted in the text,
the link to the web page is <http://www.biomath.info>.

Equation 4




